login
A271660
Primes p such that phi(phi(p-2)-1) = phi(phi(p-1)-1).
5
5, 17, 257, 317, 977, 2237, 3257, 5189, 8537, 9533, 11717, 13367, 22937, 37847, 65537, 76871, 307397, 428957, 491537, 589409, 610913, 983777, 1055063, 1207097, 1340789, 1659587, 2822717, 3137357, 3264887, 3488333, 4994117, 5577827, 6475457, 7378373, 7479089
OFFSET
1,1
COMMENTS
The first 4 known Fermat primes > 3 from A019434 are in the sequence.
EXAMPLE
317 is a term because phi(phi(317-2)-1) = phi(phi(315)-1) = phi(144-1) = phi(143) = 120 = phi(phi(317-1)-1) = phi(phi(316)-1) = phi(156-1) = phi(155).
MATHEMATICA
Select[Prime@ Range[3, 10^6], EulerPhi[EulerPhi[# - 2] - 1] == EulerPhi[EulerPhi[# - 1] - 1] &] (* Michael De Vlieger, Apr 12 2016 *)
PROG
(Magma) [n: n in [4..5*10^7] | IsPrime(n) and EulerPhi(EulerPhi(n-2)-1) eq EulerPhi(EulerPhi(n-1)-1)]
(PARI) lista(nn) = forprime(p=5, nn, if(eulerphi(eulerphi(p-2)-1) == eulerphi(eulerphi(p-1)-1), print1(p, ", "))); \\ Altug Alkan, Apr 12 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Apr 12 2016
STATUS
approved