login
A271423
Number T(n,k) of set partitions of [n] with maximal block length multiplicity equal to k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
14
1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 5, 9, 0, 1, 0, 16, 25, 10, 0, 1, 0, 82, 70, 35, 15, 0, 1, 0, 169, 406, 245, 35, 21, 0, 1, 0, 541, 2093, 1036, 385, 56, 28, 0, 1, 0, 2272, 10935, 4984, 2331, 504, 84, 36, 0, 1, 0, 17966, 41961, 37990, 13335, 3717, 840, 120, 45, 0, 1
OFFSET
0,8
COMMENTS
At least one block length occurs exactly k times, and all block lengths occur at most k times.
LINKS
EXAMPLE
T(4,1) = 5: 1234, 123|4, 124|3, 134|2, 1|234.
T(4,2) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
T(4,4) = 1: 1|2|3|4.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 4, 0, 1;
0, 5, 9, 0, 1;
0, 16, 25, 10, 0, 1;
0, 82, 70, 35, 15, 0, 1;
0, 169, 406, 245, 35, 21, 0, 1;
0, 541, 2093, 1036, 385, 56, 28, 0, 1;
0, 2272, 10935, 4984, 2331, 504, 84, 36, 0, 1;
0, 17966, 41961, 37990, 13335, 3717, 840, 120, 45, 0, 1;
...
MAPLE
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j=0..min(k, n/i))))
end:
T:= (n, k)-> b(n$2, k)-`if`(k=0, 0, b(n$2, k-1)):
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]] * b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i]}]]]; T[n_, k_] := b[n, n, k] - If[k == 0, 0, b[n, n, k - 1]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 06 2017, after Alois P. Heinz *)
CROSSREFS
Columns k=0-10 give: A000007, A007837 (for n>0), A271731, A271732, A271733, A271734, A271735, A271736, A271737, A271738, A271739.
Row sums give A000110.
Main diagonal gives A000012.
T(2n,n) gives A271425.
Cf. A271424.
Sequence in context: A147311 A147312 A352771 * A372762 A019974 A344373
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Apr 07 2016
STATUS
approved