login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271267
Even numbers k such that k + 2 divides k^k + 2.
1
4, 16, 196, 2836, 5956, 25936, 65536, 540736, 598816, 797476, 1151536, 3704416, 8095984, 11272276, 13362420, 21235696, 29640832, 31084096, 42913396, 49960912, 55137316, 70254724, 70836676, 81158416, 94618996, 111849956, 129275056, 150026176, 168267856, 169242676, 189796420, 192226516, 198464176, 208232116, 244553296, 246605776, 300018016, 318143296
OFFSET
1,1
COMMENTS
In other words, even numbers k such that k + 2 divides A014566(k) + 1.
Even terms of A213382.
4, 16, 65536 are the numbers of the form 2^(2^(2^k)), for k >= 0. Are there other members of this sequence with the form of 2^(2^(2^k))?
2^(2^(2^3)) and 2^(2^(2^4)) are terms. - Michael S. Branicky, Apr 16 2021
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..150
EXAMPLE
4 is a term because 4 + 2 = 6 divides 4^4 + 2 = 258.
MATHEMATICA
Select[Range[2, 10^4, 2], Divisible[#^# + 2, # + 2] &] (* Michael De Vlieger, Apr 03 2016 *)
PROG
(PARI) lista(nn) = forstep(n=2, nn, 2, if( Mod(n, n+2)^n == -2 , print1(n, ", "))); \\ Joerg Arndt, Apr 03 2016
(Python)
def afind(limit):
k = 2
while k < limit:
if (pow(k, k, k+2) + 2)%(k+2) == 0: print(k, end=", ")
k += 2
afind(10**7) # Michael S. Branicky, Apr 16 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Apr 03 2016
STATUS
approved