%I #7 Apr 03 2016 22:18:59
%S 13451,15901,19001,19801,21701,22901,28001,38851,50551,64301,65101,
%T 66851,78101,89101,94351,95701,96401,117751,124001,126001,127951,
%U 136601,138401,150301,162251,164701,167051,178301,178501,181001,183301,185051,185401,185951,186301
%N Artiads (A001583) congruent to 1 mod 50 and for which 5 is a quintic residue.
%C Hyperartiads (A270798) congruent to 1 mod 50.
%H Eric M. Schmidt, <a href="/A271210/b271210.txt">Table of n, a(n) for n = 1..1000</a>
%H E. Lehmer, <a href="http://dx.doi.org/10.1016/0022-247X(66)90145-4">Artiads characterized</a>, J. Math. Anal. Appl. 15 1966 118-131. See p. 123-124, Theorem 3.
%H E. Lehmer, <a href="/A001583/a001583b.pdf">Artiads characterized</a>, J. Math. Anal. Appl. 15 1966 118-131 [annotated and corrected scanned copy]
%o (Sage) def isa(n) : return n % 50 == 1 and is_prime(n) and 5.powermod((n-1)//5, n) == 1 and fibonacci((n - 1)//5) % n == 0
%Y Cf. A001583, A270798.
%K nonn
%O 1,1
%A _Eric M. Schmidt_, Apr 02 2016