Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Jul 06 2024 10:30:31
%S 0,0,0,0,0,0,10,70,280,840,2100,4620,9240,17160,30030,50050,80080,
%T 123760,185640,271320,387600,542640,746130,1009470,1345960,1771000,
%U 2302300,2960100,3767400,4750200,5937750,7362810,9061920,11075680,13449040,16231600,19477920
%N Number of different 3 against 3 matches given n players.
%C Given n players there are a(n) different ways of arranging those players in a 3 against 3 contest.
%C Number of ways to select two disjoint subsets of size 3 from a set of n elements. - _Joerg Arndt_, Mar 29 2016
%H Colin Barker, <a href="/A271040/b271040.txt">Table of n, a(n) for n = 0..1000</a>
%H Sela Fried, <a href="https://arxiv.org/abs/2406.18923">Counting r X s rectangles in nondecreasing and Smirnov words</a>, arXiv:2406.18923 [math.CO], 2024. See p. 9.
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).
%F a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)/72.
%F a(n) = binomial(n,3) * binomial(n-3,3) / 2. - _Joerg Arndt_, Mar 29 2016
%F From _Colin Barker_, Mar 29 2016: (Start)
%F a(n) = 10*A000579(n).
%F a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7) for n>6.
%F G.f.: 10*x^6 / (1-x)^7.
%F (End)
%e When there are 6 players, there are 10 different 3 against 3 matches that can be played: ABC v DEF, ABD v CEF, ABE v CDF, ABF v CDE, ACD v BEF, ACE v BDF, ACF v BDE, ADE v BCF, ADF v BCE, AEF v BCD.
%t LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,0,0,0,10},40] (* _Harvey P. Dale_, Sep 17 2016 *)
%o (PARI) concat(vector(6), Vec(10*x^6/(1-x)^7 + O(x^50))) \\ _Colin Barker_, Mar 29 2016
%o (PARI) a(n)=binomial(n,3)*binomial(n-3,3)/2 \\ _Charles R Greathouse IV_, May 22 2018
%Y Cf. A050534, the analogous situation for 2 against 2 matches.
%K nonn,easy
%O 0,7
%A _Elliott Line_, Mar 29 2016