login
A270545
Number of equilateral triangle units forming perimeter of equilateral triangle.
2
1, 4, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, 105, 111, 117, 123, 129, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 195, 201, 207, 213, 219, 225, 231, 237, 243, 249, 255, 261, 267, 273, 279, 285, 291, 297, 303, 309, 315
OFFSET
0,2
COMMENTS
This is the triangular equivalent of A008574 (square units forming perimeter of a square).
The height of each triangle is n+1 units.
FORMULA
a(0)=1 and a(1)=4; thereafter a(n) = (n+1)^2-(n-2)^2 = 6*n-3.
a(n) = 2*a(n-1)-a(n-2) for n>3. G.f.: (1+x)*(1+x+x^2) / (1-x)^2. - Colin Barker, Mar 20 2016
a(n) = A016945(n-1), n>1.
MATHEMATICA
CoefficientList[Series[(1 + x) (1 + x + x^2)/(1 - x)^2, {x, 0, 53}], x] (* Michael De Vlieger, Mar 21 2016 *)
PROG
(PARI) a(n)=if(n<2, 3*n+1, 6*n-3) \\ Charles R Greathouse IV, Mar 19 2016
(PARI) Vec((1+x)*(1+x+x^2)/(1-x)^2 + O(x^50)) \\ Colin Barker, Mar 20 2016
CROSSREFS
Sequence in context: A313295 A313296 A313297 * A359626 A358243 A099055
KEYWORD
nonn,easy
AUTHOR
Peter M. Chema, Mar 18 2016
STATUS
approved