%I #11 Feb 23 2018 11:04:51
%S 2,3,5,6,52,668,171510,4590170768,17103459833953822083,
%T 31906466290986600582512428032058109695,
%U 237271596693541800921324673318278335675822001026279366213434934428597656224
%N Denominators of r-Egyptian fraction expansion for sqrt(1/2), where r(k) = 1/k!.
%C Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1)) + r(2)/(n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
%C See A269993 for a guide to related sequences.
%H Clark Kimberling, <a href="/A270517/b270517.txt">Table of n, a(n) for n = 1..13</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a>
%H <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a>
%e sqrt(1/2) = 1/(1*2) + 1/(2*3) + 1/(6*5) + 1/(24*6) + ...
%t r[k_] := 1/k!; f[x_, 0] = x; z = 10;
%t n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
%t f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
%t x = Sqrt[1/2]; Table[n[x, k], {k, 1, z}]
%o (PARI) r(k) = 1/k!;
%o f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x););
%o a(k, x=sqrt(1/2)) = ceil(r(k)/f(k-1, x)); \\ _Michel Marcus_, Mar 31 2016
%Y Cf. A269993, A000142, A010503.
%K nonn,frac,easy
%O 1,1
%A _Clark Kimberling_, Mar 30 2016