OFFSET
0,1
COMMENTS
Mc Laughlin (2010) gives an identity relating ten sequences, denoted a_k, b_k, ..., f_k, p_k, q_k, r_k, s_k. This is the sequence s_k.
LINKS
J. Mc Laughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.
Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
FORMULA
G.f.: (-7*x^2 + 148*x - 5)/(x^3 - 99*x^2 + 99*x - 1).
a(n) = 17/12 + (-(17*sqrt(6) - 43)/(2*sqrt(6) + 5)^(2*n) + (17*sqrt(6) + 43)*(2 sqrt(6) + 5)^(2*n))/24. - Bruno Berselli, Mar 02 2016
MATHEMATICA
CoefficientList[Series[(-7 x^2 + 148 x - 5)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[Simplify[17/12 + (-(17 Sqrt[6] - 43)/(2 Sqrt[6] + 5)^(2 n) + (17 Sqrt[6] + 43) (2 Sqrt[6] + 5)^(2 n))/24], {n, 0, 20}] (* Bruno Berselli, Mar 02 2016 *)
PROG
(PARI) Vec((-7*x^2 + 148*x - 5)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
(Sage)
gf = (-7*x^2+148*x-5)/(x^3-99*x^2+99*x-1)
print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 02 2016
(Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((-7*x^2+148*x-5)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 02 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michel Marcus, Feb 29 2016
STATUS
approved