login
Expansion of (-5*x^2 + 138*x + 3)/(x^3 - 99*x^2 + 99*x - 1).
9

%I #28 Jan 05 2025 19:51:40

%S -3,-435,-42763,-4190475,-410623923,-40236954115,-3942810879483,

%T -386355229235355,-37858869654185443,-3709782870880938195,

%U -363520862476677757803,-35621334739843539326635,-3490527283642190176252563,-342036052462194793733424675,-33516042614011447595699365723

%N Expansion of (-5*x^2 + 138*x + 3)/(x^3 - 99*x^2 + 99*x - 1).

%C Mc Laughlin (2010) gives an identity relating ten sequences, denoted a_k, b_k, ..., f_k, p_k, q_k, r_k, s_k. This is the sequence p_k.

%H J. Mc Laughlin, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/48-1/McLaughlin.pdf">An identity motivated by an amazing identity of Ramanujan</a>, Fib. Q., 48 (No. 1, 2010), 34-38.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (99,-99,1).

%t LinearRecurrence[{99, -99, 1}, {-3, -435, -42763}, 20] (* _Paolo Xausa_, Mar 04 2024 *)

%o (PARI) Vec((-5*x^2 + 138*x + 3)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))

%K sign,easy

%O 0,1

%A _Michel Marcus_, Feb 29 2016