OFFSET
0,5
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..450
FORMULA
E.g.f. A(x) satisfies 0 = A'(x)*(A'(x) + A'''(x)) - (A(x) + A''(x))*(A(x) + 2*A''(x)).
0 = a(n)*(+a(n+1) - a(n+2) + 2*a(n+3) - a(n+4)) + a(n+1)*(+a(n+1) + 2*a(n+3)) + a(n+2)*(-a(n+2) + a(n+3) - a(n+4)) + a(n+3)*(+a(n+3)) for all n>=0.
a(n) ~ c * (n-1)!, where c = BesselJ(0,1) = 0.7651976865579665514497175261... . - Vaclav Kotesovec, Feb 27 2016
EXAMPLE
G.f. = x + x^2 + x^3 + 4*x^4 + 18*x^5 + 90*x^6 + 542*x^7 + 3812*x^8 + ...
MATHEMATICA
RecurrenceTable[{a[n] == (n-1)*a[n-1] - a[n-2] + (n-2)*a[n-3], a[0]==0, a[1]==a[2]==1}, a, {n, 0, 20}] (* Vaclav Kotesovec, Mar 07 2016 *)
FullSimplify[Assuming[Element[x, Reals], CoefficientList[Series[Pi/2 * (BesselJ[0, 1 - x]*BesselY[0, -1] - BesselJ[0, 1] * BesselY[0, -1 + x]), {x, 0, 20}], x] * Range[0, 20]!]] (* Vaclav Kotesovec, Mar 07 2016 *)
PROG
(PARI) {a(n) = if( n<3, n>0, (n-1)*a(n-1) - a(n-2) + (n-2)*a(n-3))};
(PARI) {a(n) = my(A); if( n<3, n>0, A = vector(n, i, 1); for(i=4, n, A[i] = (i-1)*A[i-1] - A[i-2] + (i-2)*A[i-3]); A[n])};
(Magma) I:=[1, 1, 1]; [0] cat [n le 3 select I[n] else (n-1)*Self(n-1) - Self(n-2) + (n - 2)*Self(n-3): n in [1..50]]; // G. C. Greubel, Jul 30 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Feb 27 2016
STATUS
approved