login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269450
a(n) = (n-1)*a(n-1) - a(n-2) + (n-2)*a(n-3) with a(0)=0, a(1)=a(2)=1.
3
0, 1, 1, 1, 4, 18, 90, 542, 3812, 30584, 275780, 2761524, 30406824, 365153944, 4749732736, 66526393072, 998258318560, 15976852694928, 271672659784368, 4891101414839216, 92946837570669440, 1859207430534452576, 39048231231949618976, 859153763261341223136
OFFSET
0,5
LINKS
FORMULA
E.g.f. A(x) satisfies 0 = A'(x)*(A'(x) + A'''(x)) - (A(x) + A''(x))*(A(x) + 2*A''(x)).
0 = a(n)*(+a(n+1) - a(n+2) + 2*a(n+3) - a(n+4)) + a(n+1)*(+a(n+1) + 2*a(n+3)) + a(n+2)*(-a(n+2) + a(n+3) - a(n+4)) + a(n+3)*(+a(n+3)) for all n>=0.
a(n) ~ c * (n-1)!, where c = BesselJ(0,1) = 0.7651976865579665514497175261... . - Vaclav Kotesovec, Feb 27 2016
EXAMPLE
G.f. = x + x^2 + x^3 + 4*x^4 + 18*x^5 + 90*x^6 + 542*x^7 + 3812*x^8 + ...
MATHEMATICA
RecurrenceTable[{a[n] == (n-1)*a[n-1] - a[n-2] + (n-2)*a[n-3], a[0]==0, a[1]==a[2]==1}, a, {n, 0, 20}] (* Vaclav Kotesovec, Mar 07 2016 *)
FullSimplify[Assuming[Element[x, Reals], CoefficientList[Series[Pi/2 * (BesselJ[0, 1 - x]*BesselY[0, -1] - BesselJ[0, 1] * BesselY[0, -1 + x]), {x, 0, 20}], x] * Range[0, 20]!]] (* Vaclav Kotesovec, Mar 07 2016 *)
PROG
(PARI) {a(n) = if( n<3, n>0, (n-1)*a(n-1) - a(n-2) + (n-2)*a(n-3))};
(PARI) {a(n) = my(A); if( n<3, n>0, A = vector(n, i, 1); for(i=4, n, A[i] = (i-1)*A[i-1] - A[i-2] + (i-2)*A[i-3]); A[n])};
(Magma) I:=[1, 1, 1]; [0] cat [n le 3 select I[n] else (n-1)*Self(n-1) - Self(n-2) + (n - 2)*Self(n-3): n in [1..50]]; // G. C. Greubel, Jul 30 2018
CROSSREFS
Sequence in context: A011270 A367724 A355247 * A206639 A367875 A172964
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Feb 27 2016
STATUS
approved