login
A268926
Primes 6k + 1 preceding the maximal gaps in A268925.
4
7, 19, 43, 241, 1327, 4363, 7789, 22189, 24247, 38461, 40237, 69499, 480169, 1164607, 1207699, 1467937, 1526659, 3975721, 11962651, 14466637, 19097257, 30097861, 39895309, 198389311, 303644227, 393202123, 485949253, 680676109, 1917214927, 3868900621, 4899889741, 6957509653, 7599382573
OFFSET
1,1
COMMENTS
Subsequence of A002476 and A330854.
A268925 lists the corresponding record gap sizes. See more comments there.
LINKS
Alexei Kourbatov and Marek Wolf, Predicting maximal gaps in sets of primes, arXiv preprint arXiv:1901.03785 [math.NT], 2019.
FORMULA
a(n) = A268927(n) - A268925(n). - Alexei Kourbatov, Jun 21 2020
EXAMPLE
The first two primes of the form 6k+1 are 7 and 13, so a(1)=7. The next prime of this form is 19; the gap 19-13 is not a record so nothing is added to the sequence. The next prime of this form is 31 and the gap 31-19=12 is a new record, so a(2)=19.
PROG
(PARI) re=0; s=7; forprime(p=13, 1e8, if(p%6!=1, next); g=p-s; if(g>re, re=g; print1(s", ")); s=p)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexei Kourbatov, Feb 15 2016
STATUS
approved