login
A268905
Number of 2 X n 0..2 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.
1
0, 36, 168, 696, 2664, 9720, 34344, 118584, 402408, 1347192, 4461480, 14644152, 47711592, 154472184, 497428776, 1594323000, 5089079016, 16185567096, 51311691432, 162200044728, 511395045480, 1608569870328, 5048863812648
OFFSET
1,2
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) - 9*a(n-2) for n>4.
Conjectures from Colin Barker, Jan 16 2019: (Start)
G.f.: 12*x^2*(3 - x)*(1 - x) / (1 - 3*x)^2.
a(n) = 8*3^(n-3) * (8*n-3) for n>2.
(End)
EXAMPLE
Some solutions for n=4:
..0..2..1..2. .2..2..2..1. .0..0..2..1. .1..0..1..0. .1..1..0..1
..2..2..2..2. .1..2..1..0. .0..1..0..0. .1..2..0..0. .0..1..2..2
CROSSREFS
Row 2 of A268904.
Sequence in context: A064500 A264474 A338390 * A017054 A231972 A330770
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 15 2016
STATUS
approved