login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268268
a(n) begins the first chain of 7 consecutive positive integers of h-values with symmetrical gaps about the center, where h(k) is the length of the finite sequence k, f(k), f(f(k)), ..., 1 in the Collatz (or 3x + 1) problem.
2
943, 1377, 1494, 1495, 1680, 1681, 1682, 1991, 1992, 1993, 2358, 2359, 2987, 2988, 2989, 2990, 2991, 2992, 2993, 2994, 3288, 3289, 3360, 3542, 3543, 3982, 3983, 3984, 3985, 3986, 3987, 3988, 4193, 4481, 4482, 4722, 4723, 4724, 4725, 4897, 4936, 4937, 5313, 5314
OFFSET
1,1
COMMENTS
Or numbers k such that h(k) + h(k+6) = h(k+1) + h(k+5) and h(k+3) = (h(k) + h(k+6))/2, where h(k) is the length of k, f(k), f(f(k)), ..., 1 in the Collatz (or 3x + 1) problem.
a(1) = A078441(7).
The symmetry can be seen from the differences between consecutive h(k) (see the example).
The 7-tuple of consecutive h(k) are symmetric about the central value h(k+3) which are averages of both their immediate neighbors, their second neighbors and their third neighbors.
A majority of numbers of the sequence generate trivial 7-tuples {m, m, m, m, m, m, m}.
The 7-tuples {h(k)} of the form {m, p, p, p, p, p, q} are generated by the numbers of the sequence 1377, 4897, ...
The 7-tuples {h(k)} of the form {m, m, p, m, q, m, m} are generated by the numbers of the sequence 5511, 58757, ...
The 7-tuples {h(k)} of the form {m, p, m, m, m, q, p} are generated by the numbers of the sequence 9514, ...
The 7-tuples {h(k)} of the form {m, m, p, p, p, q, q} are generated by the numbers of the sequence 21442, 25666, ...
The 7-tuples {h(k)} of the form {m, m, m, p, q, q, q} are generated by the numbers of the sequence 55108, 55293, ...
EXAMPLE
In 7-tuple of consecutive {h(k)}: {h(9514),h(9515),h(9516),h(9517),h(9518),h(9519),h(9520)} = {78,52,78,78,78,104,78}, the central value is 78, and 78+78 = 52+104 = 2*78. Hence, 9514 is in the sequence.
Alternatively, the symmetry can be seen from the differences between consecutive {h(k)}. For {78,52,78,78,78,104,78}, the differences {h(k+1)-h(k)} are {-26,26,0,0,26,-26}.
MATHEMATICA
lst={}; f[n_]:=Module[{a=n, k=0}, While[a!=1, k++; If[EvenQ[a], a=a/2, a=a*3+1]]; k]; Do[If[f[m]+f[m+6]==f[m+1]+f[m+5]&&f[m+2]+f[m+4]==f[m]+f[m+6]&& f[m]+f[m+6]==f[m+2]+f[m+4]&&f[m+3]==(f[m]+f[m+6])/2, AppendTo[lst, m]], {m, 1, 6000}]; lst
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jan 29 2016
STATUS
approved