login
A268183
Values of a^2 + b^2 such that sigma(a^2 + b^2) is of the form x^2 + y^2 where a, b, x, y are nonzero integers.
1
10, 17, 40, 52, 58, 73, 89, 90, 97, 106, 145, 153, 193, 202, 232, 233, 241, 250, 298, 313, 337, 338, 346, 360, 409, 416, 424, 449, 457, 468, 505, 521, 522, 538, 577, 586, 634, 640, 657, 673, 680, 724, 730, 745, 778, 801, 808, 809, 810, 845, 865, 873, 881, 890, 953, 954, 976, 986, 1000
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
10 is a term because 10 = 1^2 + 3^2 and 10 is divisible by 1, 2, 5, 10 and 1 + 2 + 5 + 10 = 3^2 + 3^2.
PROG
(PARI) isA000404(n)=for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2))
lista(nn) = for(n=1, nn, if(isA000404(n) && isA000404(sigma(n)), print1(n, ", ")));
(PARI) isA000404(n)= for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2))
list(lim)=my(v=List(), x2, t); lim\=1; for(x=1, sqrtint(lim-1), x2=x^2; for(y=1, sqrtint(lim-x2), if(isA000404(sigma(t=x2+y^2)), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Apr 30 2016
CROSSREFS
Sequence in context: A364823 A019991 A164285 * A293690 A069546 A065018
KEYWORD
nonn
AUTHOR
Altug Alkan, Apr 30 2016
STATUS
approved