login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268127
a(n) = (A005704(n)-A006047(n))/3.
3
0, 0, 0, 1, 1, 1, 3, 3, 3, 7, 8, 9, 12, 13, 14, 19, 20, 21, 30, 33, 36, 42, 45, 48, 57, 60, 63, 79, 86, 93, 103, 111, 119, 132, 141, 150, 168, 180, 192, 209, 222, 235, 257, 271, 285, 316, 335, 354, 380, 400, 420, 453, 474, 495, 543, 573, 603, 639, 672, 705, 747
OFFSET
0,7
LINKS
G. E. Andrews, A. S. Fraenkel, and J. A. Sellers, Characterizing the number of m-ary partitions modulo m, The American Mathematical Monthly, Vol. 122, No. 9 (November 2015), pp. 880-885.
G. E. Andrews, A. S. Fraenkel, and J. A. Sellers, Characterizing the number of m-ary partitions modulo m.
Tom Edgar, The distribution of the number of parts of m-ary partitions modulo m., arXiv:1603.00085 [math.CO], 2016.
FORMULA
Let b(0) = 1 and b(n) = b(n-1) + b(floor(n/3)) and let c(n) = Product_{i=0..k}(n_i+1) where n = Sum_{i=0..k}n_i*3^i is the ternary representation of n. Then a(n) = (1/3)*(b(n) - c(n)).
MATHEMATICA
b[n_] := b[n] = If[n <= 2, n+1, b[n-1] + b[Floor[n/3]]];
c = Nest[Join[#, 2#, 3#]&, {1}, 4];
a[n_] := (b[n] - c[[n+1]])/3;
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 12 2018 *)
PROG
(Sage)
def b(n):
A=[1]
for i in [1..n]:
A.append(A[i-1] + A[floor(i/3)])
return A[n]
[(b(n)-prod(x+1 for x in n.digits(3)))/3 for n in [0..60]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Tom Edgar, Jan 26 2016
STATUS
approved