Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Sep 08 2022 08:46:15
%S 1261,13651,17557,18721,24511,42121,113611,244531,266071,712081,
%T 749911,795691,992251,1080721,1286731,1458271,1849471,2271061,2457691,
%U 3295381,3370771,3414841,3714751,4061971,4736491,5314051,5827081,6566911,6935083,7303981,7864081
%N Numbers n such that phi(n) = 4*phi(n-1).
%C See A266276(n) = the smallest numbers k such that phi(k) = n * phi(k-1) for n >=1: 2, 3, 7, 1261, 11242771, ...
%F a(n) = A172314(n) + 1. - _Michel Marcus_, Jan 27 2016
%e 1261 is in the sequence because phi(1261) = 1152 = 4*phi(1260) = 4*288.
%t Select[Range@10000000, EulerPhi@# == 4 EulerPhi[# - 1] &] (* _Vincenzo Librandi_, Jan 27 2016 *)
%o (Magma) [n: n in [2..10^7] | EulerPhi(n) eq 4*EulerPhi(n-1)]
%o (PARI) isok(n) = (eulerphi(n) == 4*eulerphi(n-1)); \\ _Michel Marcus_, Jan 27 2016
%Y Cf. A000010, A171271 (numbers n such that phi(n) = 2*phi(n-1)), A266268 (numbers n such that phi(n) = 3*phi(n-1)), A266276.
%Y Cf. A256937.
%K nonn
%O 1,1
%A _Jaroslav Krizek_, Jan 26 2016