login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266775
Molien series for invariants of finite Coxeter group D_12 (bisected).
10
1, 1, 2, 3, 5, 7, 12, 16, 24, 33, 47, 63, 88, 115, 155, 202, 266, 341, 443, 560, 715, 897, 1129, 1401, 1746, 2146, 2645, 3228, 3941, 4771, 5781, 6948, 8353, 9979, 11913, 14144, 16785, 19814, 23374, 27454, 32211, 37645, 43954, 51130, 59417, 68827, 79631, 91863, 105857, 121645
OFFSET
0,3
COMMENTS
The Molien series for the finite Coxeter group of type D_k (k >= 3) has g.f. = 1/Product_i (1-x^(1+m_i)) where the m_i are [1,3,5,...,2k-3,k-1]. If k is even only even powers of x appear, and we bisect the sequence.
REFERENCES
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
FORMULA
G.f.: 1/((1-t^2)*(1-t^4)*(1-t^6)*(1-t^8)*(1-t^10)*(1-t^12)^2*(1-t^14)*(1-t^16)*(1-t^18)*(1-t^20)*(1-t^22)), bisected.
G.f.: 1/( (1-t^6)*Product_{j=1..11} (1-t^j) ). - G. C. Greubel, Feb 01 2020
MAPLE
S:=series(1/((1-x^6)*mul(1-x^j, j=1..11)), x, 55): seq(coeff(S, x, j), j=0..50); # G. C. Greubel, Jan 31 2020
MATHEMATICA
CoefficientList[Series[1/((1-t^6)*Product[1-t^j, {j, 11}]), {t, 0, 50}], t] (* G. C. Greubel, Jan 31 2020 *)
PROG
(PARI) Vec( 1/( (1-x^6)*prod(j=1, 11, 1-x^j) ) + O('x^50)) \\ G. C. Greubel, Jan 31 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/((1-x^6)*(&*[1-x^j: j in [1..11]])) )); // G. C. Greubel, Jan 31 2020
(Sage) [( 1/((1-x^6)*product(1-x^j for j in (1..11))) ).series(x, n+1).list()[n] for n in (0..50)] # G. C. Greubel, Jan 31 2020
CROSSREFS
Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770-A266775.
Sequence in context: A078912 A105930 A122622 * A024790 A373297 A308271
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 11 2016
STATUS
approved