Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Jul 06 2024 10:30:37
%S 0,21,168,756,2520,6930,16632,36036,72072,135135,240240,408408,668304,
%T 1058148,1627920,2441880,3581424,5148297,7268184,10094700,13813800,
%U 18648630,24864840,32776380,42751800,55221075,70682976,89713008,112971936,141214920,175301280
%N a(n) = 21*binomial(n+6,7).
%C Total number of pips on a set of hexominoes (6-celled linear dominoes) with up to n pips in each cell.
%H Colin Barker, <a href="/A266733/b266733.txt">Table of n, a(n) for n = 0..1000</a>
%H Steve Butler and Pavel Karasik, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Butler/butler7.html">A note on nested sums</a>, J. Int. Seq. (2010) Vol. 13, Issue 4, Art. No. 10.4.4. See p=6 in the last equation on page 3.
%H Sela Fried, <a href="https://arxiv.org/abs/2406.18923">Counting r X s rectangles in nondecreasing and Smirnov words</a>, arXiv:2406.18923 [math.CO], 2024. See p. 9.
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1).
%F a(n) = 21*A000580(n+6).
%F From _Colin Barker_, Jan 08 2016: (Start)
%F a(n) = n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n)/240.
%F a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8) for n>7.
%F G.f.: 21*x / (1-x)^8.
%F (End)
%t Table[21 Binomial[n+6,7],{n,0,40}] (* _Harvey P. Dale_, Jan 13 2021 *)
%o (PARI) a(n) = (n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n))/240 \\ _Colin Barker_, Jan 08 2016
%o (PARI) concat(0, Vec(21*x/(1-x)^8 + O(x^40))) \\ _Colin Barker_, Jan 08 2016
%Y Row 6 of array in A129533.
%K nonn,easy
%O 0,2
%A _Alan Shore_ and _N. J. A. Sloane_, Jan 06 2016