login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266733
a(n) = 21*binomial(n+6,7).
2
0, 21, 168, 756, 2520, 6930, 16632, 36036, 72072, 135135, 240240, 408408, 668304, 1058148, 1627920, 2441880, 3581424, 5148297, 7268184, 10094700, 13813800, 18648630, 24864840, 32776380, 42751800, 55221075, 70682976, 89713008, 112971936, 141214920, 175301280
OFFSET
0,2
COMMENTS
Total number of pips on a set of hexominoes (6-celled linear dominoes) with up to n pips in each cell.
LINKS
Steve Butler and Pavel Karasik, A note on nested sums, J. Int. Seq. (2010) Vol. 13, Issue 4, Art. No. 10.4.4. See p=6 in the last equation on page 3.
Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 9.
FORMULA
a(n) = 21*A000580(n+6).
From Colin Barker, Jan 08 2016: (Start)
a(n) = n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n)/240.
a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8) for n>7.
G.f.: 21*x / (1-x)^8.
(End)
MATHEMATICA
Table[21 Binomial[n+6, 7], {n, 0, 40}] (* Harvey P. Dale, Jan 13 2021 *)
PROG
(PARI) a(n) = (n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n))/240 \\ Colin Barker, Jan 08 2016
(PARI) concat(0, Vec(21*x/(1-x)^8 + O(x^40))) \\ Colin Barker, Jan 08 2016
CROSSREFS
Row 6 of array in A129533.
Sequence in context: A126993 A332944 A022681 * A107970 A105249 A278992
KEYWORD
nonn,easy
AUTHOR
Alan Shore and N. J. A. Sloane, Jan 06 2016
STATUS
approved