login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Binary representation of the n-th iteration of the "Rule 59" elementary cellular automaton starting with a single ON (black) cell.
3

%I #35 Jul 06 2023 12:59:12

%S 1,101,110,1111011,1100,11111110111,11000,111111111101111,110000,

%T 1111111111111011111,1100000,11111111111111110111111,11000000,

%U 111111111111111111101111111,110000000,1111111111111111111111011111111,1100000000,11111111111111111111111110111111111

%N Binary representation of the n-th iteration of the "Rule 59" elementary cellular automaton starting with a single ON (black) cell.

%H Robert Price, <a href="/A266717/b266717.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H Stephen Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>, Wolfram Media, 2002; p. 55.

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F Conjectures from _Colin Barker_, Jan 04 2016 and Apr 18 2019: (Start)

%F a(n) = 10011*a(n-2)-110010*a(n-4)+100000*a(n-6) for n>6.

%F G.f.: (1+101*x-9901*x^2+99900*x^3-990100*x^4-110000*x^5+1000000*x^6) / ((1-x)*(1+x)*(1-100*x)*(1+100*x)*(1-10*x^2)).

%F (End)

%t rule=59; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]],{k,1,rows}] (* Binary Representation of Rows *)

%Y Cf. A266716, A266718.

%K nonn,easy

%O 0,2

%A _Robert Price_, Jan 03 2016

%E Removed an unjustified claim that _Colin Barker_'s conjectures are correct. Removed a program based on a conjecture. - _N. J. A. Sloane_, Jun 13 2022