login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266589
Binary representation of the n-th iteration of the "Rule 37" elementary cellular automaton starting with a single ON (black) cell.
2
1, 10, 1110, 1000001, 111000, 11100000111, 11100000, 111110000011111, 1110000000, 1111111000001111111, 111000000000, 11111111100000111111111, 11100000000000, 111111111110000011111111111, 1110000000000000, 1111111111111000001111111111111, 111000000000000000
OFFSET
0,2
FORMULA
Conjectures from Colin Barker, Jan 01 2016 and Apr 18 2019: (Start)
a(n) = 10101*a(n-2)-1010100*a(n-4)+1000000*a(n-6) for n>7.
G.f.: (1 +10*x -8991*x^2 +898991*x^3 -10091010*x^4 +1009091010*x^5 +10100000*x^6 -1010100000*x^7) / ((1 -x)*(1 +x)*(1 -10*x)*(1 +10*x)*(1 -100*x)*(1 +100*x)).
(End)
Conjecture: a(n) = (10*100^n - 99999*10^(n-2) - 1)/9 for odd n > 1; a(n) = 111*10^(n-1) for even n > 1. - Karl V. Keller, Jr., Oct 06 2021
MATHEMATICA
rule=37; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]], {k, 1, rows}] (* Binary Representation of Rows *)
CROSSREFS
Sequence in context: A049064 A267246 A355316 * A015026 A130598 A267595
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 01 2016
STATUS
approved