login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265936
G.f.: Sum_{n>=0} (1 + x)^(n^2) / 2^n.
4
2, 6, 72, 1488, 43212, 1615824, 73897824, 3995603040, 249332628600, 17635891224600, 1394325697514112, 121850733102557184, 11663364820483368384, 1213527023075625127296, 136368036713802512640384, 16459661773011642351224832, 2123742016843422531580031760, 291703805646180152870305600416, 42495460119330209128505618419584, 6544578588779477399509681497008256, 1062399800520315889891506552001161024, 181308080907736435566683700136306288320
OFFSET
0,1
LINKS
FORMULA
G.f.: Sum_{n>=0} (1+x)^n/2^n * Product_{k=1..n} (2 - (1+x)^(4*k-3)) / (2 - (1+x)^(4*k-1)) due to a q-series identity.
G.f.: 1/(1 - (1+x)/2 /(1 - (1+x)*((1+x)^2-1)/2 /(1 - (1+x)^5/2 /(1 - (1+x)^3*((1+x)^4-1)/2 /(1 - (1+x)^9/2 /(1 - (1+x)^5*((1+x)^6-1)/2 /(1 - (1+x)^13/2 /(1 - (1+x)^7*((1+x)^8-1)/2 /(1 - ...))))))))), a continued fraction due to a partial elliptic theta function identity.
a(n) = Sum_{k>=sqrt(n)} binomial(k^2,n) / 2^k.
a(n) = Sum_{k=0..2*n} A303920(n,k) * 2^k, for n>0.
a(n) = 2 * A173217(n) for n>=0.
a(n) ~ 2^(2*n + 1/2 - log(2)/8) * n^n / (exp(n) * log(2)^(2*n + 1)). - Vaclav Kotesovec, Oct 08 2019
EXAMPLE
G.f.: A(x) = 2 + 6*x + 72*x^2 + 1488*x^3 + 43212*x^4 + 1615824*x^5 + 73897824*x^6 + 3995603040*x^7 + 249332628600*x^8 + 17635891224600*x^9 +...
where
A(x) = 1 + (1+x)/2 + (1+x)^4/2^2 + (1+x)^9/2^3 + (1+x)^16/2^4 + (1+x)^25/2^5 + (1+x)^36/2^6 + (1+x)^49/2^7 + (1+x)^64/2^8 +...+ (1+x)^(n^2)/2^n +...
MATHEMATICA
Table[Round[Sum[Binomial[k^2, n]/2^k, {k, Sqrt[n], Infinity}]] , {n, 0, 20}] (* G. C. Greubel, May 23 2017 *)
Table[2*Sum[StirlingS1[n, j] * HurwitzLerchPhi[1/2, -2*j, 0]/2, {j, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 08 2019 *)
PROG
(PARI) /* Informal listing of terms: */
{Vec( round( sum(n=0, 600, (1+x +O(x^31))^(n^2)/2^n * 1.) ) )}
{Vec( round( sum(n=0, 200, (1.+x)^n/2^n * prod(k=1, n, (2 - (1+x)^(4*k-3)) / (2 - (1+x)^(4*k-1)) +O(x^21) ) ) ) )}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 23 2015
STATUS
approved