login
A265675
Number of smaller squarefree numbers that are coprime to the n-th squarefree number.
4
0, 1, 2, 3, 2, 5, 3, 7, 8, 5, 6, 11, 12, 8, 9, 15, 10, 17, 8, 19, 13, 13, 15, 23, 15, 17, 26, 11, 28, 18, 30, 21, 32, 25, 23, 23, 36, 37, 25, 30, 18, 41, 29, 22, 44, 45, 30, 36, 22, 49, 32, 51, 41, 34, 39, 55, 44, 41, 38, 47, 60, 61, 30, 63, 36, 43, 66, 67
OFFSET
1,3
COMMENTS
a(n) = number of A005117(k) such that A005117(k) and A005117(n) are coprime, k = 1..n-1.
LINKS
FORMULA
a(n) = Sum_{k=1..n-1} A008966(A005117(n)*A005117(k)).
EXAMPLE
A005117(7) = 10, A005117(1..6) = [1,2,3,5,6,7],
-> a(7) = #{1,3,7} = 3;
A005117(8) = 11, A005117(1..7) = [1,2,3,5,6,7,10],
-> a(8) = #{1,2,3,5,6,7,10} = 7;
A005117(9) = 13, A005117(1..8) = [1,2,3,5,6,7,10,11],
-> a(9) = #{1,2,3,5,6,7,10,11} = 8;
A005117(10) = 14, A005117(1..9) = [1,2,3,5,6,7,10,11,13],
-> a(10) = #{1,3,5,11,13} = 5;
A005117(11) = 15, A005117(1..10) = [1,2,3,5,6,7,10,11,13,14],
-> a(11) = #{1,2,7,11,13,14} = 6.
MATHEMATICA
With[{sf=Select[Range[200], SquareFreeQ]}, Table[Total[Boole[CoprimeQ[sf[[n]], sf[[Range[1, n-1]]]]]], {n, 70}]] (* Harvey P. Dale, Oct 12 2024 *)
PROG
(Haskell)
import Data.List (inits)
a265675 n = a265675_list !! (n-1)
a265675_list = map (\(x:xs) -> length $ filter ((== 1) . gcd x) xs) $
map reverse $ tail $ inits a005117_list
CROSSREFS
Sequence in context: A335285 A336268 A075105 * A094020 A165609 A358462
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Dec 13 2015
STATUS
approved