Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Mar 26 2020 07:06:14
%S 1,1,2,0,4,3,0,6,9,4,0,10,24,16,5,0,16,66,60,25,6,0,26,180,228,120,36,
%T 7,0,42,492,864,580,210,49,8,0,68,1344,3276,2800,1230,336,64,9,0,110,
%U 3672,12420,13520,7200,2310,504,81,10,0,178,10032,47088,65280,42150,15876,3976,720,100,11
%N Array T(n,k) counting words with n letters drawn from a k-letter alphabet with no letter appearing thrice in a 3-letter subword.
%C The antidiagonal sums are s(d) = 1, 3, 7, 19, 55, 173, 597, 2245, 9127, 39827, 185411, 916177, 4784217,.. at index d=n+k >=2.
%F T(4,k) = k*(k-1)*(k^2+k-1).
%F T(5,k) = k^2*(k+2)*(k-1)^2.
%F T(6,k) = k*(k^3+2*k^2-k-1)*(k-1)^2.
%F T(7,k) = k*(k+1)*(k^2+2*k-1)*(k-1)^3.
%e 1 2 3 4 5 6 7 8
%e 1 4 9 16 25 36 49 64
%e 0 6 24 60 120 210 336 504
%e 0 10 66 228 580 1230 2310 3976
%e 0 16 180 864 2800 7200 15876 31360
%e 0 26 492 3276 13520 42150 109116 247352
%e 0 42 1344 12420 65280 246750 749952 1950984
%e 0 68 3672 47088 315200 1444500 5154408 15388352
%e T(3,2) =6 counts the 3-letter words aab, aba, abb, bba, bab, baa. The words aaa and bbb are not counted.
%p A265584 := proc(n,k)
%p (1+x+x^2)/(1-(k-1)*x-(k-1)*x^2) ;
%p coeftayl(%,x=0,n) ;
%p end proc:
%p seq(seq( A265584(d-k,k),k=1..d-1),d=2..13) ;
%t T[n_, k_] := SeriesCoefficient[(1+x+x^2)/(1-(k-1)*x-(k-1)*x^2), {x, 0, n}];
%t Table[T[n-k, k], {n, 2, 12}, {k, 1, n-1}] // Flatten (* _Jean-François Alcover_, Mar 26 2020, from Maple *)
%Y Cf. A265583 (no letter twice), A265624. A000290 (row 2), A007531 (row 3), A006355 (column 2), A121907 (column 3), A123620 (column 4), A123871 (column 5), A123887 (column 6).
%K nonn,tabl,easy
%O 1,3
%A _R. J. Mathar_, Dec 10 2015