OFFSET
1,3
COMMENTS
The antidiagonal sums are s(d) = 1, 3, 7, 19, 55, 173, 597, 2245, 9127, 39827, 185411, 916177, 4784217,.. at index d=n+k >=2.
FORMULA
T(4,k) = k*(k-1)*(k^2+k-1).
T(5,k) = k^2*(k+2)*(k-1)^2.
T(6,k) = k*(k^3+2*k^2-k-1)*(k-1)^2.
T(7,k) = k*(k+1)*(k^2+2*k-1)*(k-1)^3.
EXAMPLE
1 2 3 4 5 6 7 8
1 4 9 16 25 36 49 64
0 6 24 60 120 210 336 504
0 10 66 228 580 1230 2310 3976
0 16 180 864 2800 7200 15876 31360
0 26 492 3276 13520 42150 109116 247352
0 42 1344 12420 65280 246750 749952 1950984
0 68 3672 47088 315200 1444500 5154408 15388352
T(3,2) =6 counts the 3-letter words aab, aba, abb, bba, bab, baa. The words aaa and bbb are not counted.
MAPLE
MATHEMATICA
T[n_, k_] := SeriesCoefficient[(1+x+x^2)/(1-(k-1)*x-(k-1)*x^2), {x, 0, n}];
Table[T[n-k, k], {n, 2, 12}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Mar 26 2020, from Maple *)
CROSSREFS
KEYWORD
AUTHOR
R. J. Mathar, Dec 10 2015
STATUS
approved