login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265583
Array T(n,k) = k*(k-1)^(n-1) read by ascending antidiagonals; k,n >= 1.
7
1, 0, 2, 0, 2, 3, 0, 2, 6, 4, 0, 2, 12, 12, 5, 0, 2, 24, 36, 20, 6, 0, 2, 48, 108, 80, 30, 7, 0, 2, 96, 324, 320, 150, 42, 8, 0, 2, 192, 972, 1280, 750, 252, 56, 9, 0, 2, 384, 2916, 5120, 3750, 1512, 392, 72, 10, 0, 2, 768, 8748, 20480, 18750, 9072, 2744, 576, 90, 11
OFFSET
1,3
COMMENTS
T(n,k) is the number of n-letter words in a k-letter alphabet with no adjacent letters the same. The factor k represents the number of choices of the first letter, and the n-1 times repeated factor k-1 represents the choices of the next n-1 letters avoiding their predecessor.
The antidiagonal sums are s(d) = 1, 2, 5, 12, 31, 88, 275, 942, 3513, 14158, 61241, 282632, .. for d = n+k >= 2.
LINKS
Robert Israel, Table of n, a(n) for n = 1..10011(first 141 antidiagonals, flattened)
FORMULA
T(n,k) = k*A051129(n-1,k-1) = k*A003992(k-1,n-1).
G.f. for column k: k*x/(1-(k-1)*x). - R. J. Mathar, Dec 12 2015
G.f. for array: y/(y-1) - (1+1/x)*y*LerchPhi(y,1,-1/x). - Robert Israel, Dec 13 2018
EXAMPLE
1 2 3 4 5 6 7
0 2 6 12 20 30 42
0 2 12 36 80 150 252
0 2 24 108 320 750 1512
0 2 48 324 1280 3750 9072
0 2 96 972 5120 18750 54432
0 2 192 2916 20480 93750 326592
T(3,3)=12 counts aba, abc, aca, acb, bab, bac, bca, bcb, cab, cac, cba, cbc. Words like aab or cbb are not counted.
MAPLE
A265583 := proc(n, k)
k*(k-1)^(n-1) ;
end proc:
seq(seq( A265583(d-k, k), k=1..d-1), d=2..13) ;
MATHEMATICA
T[1, 1] = 1; T[n_, k_] := If[k==1, 0, k*(k-1)^(n-1)]; Table[T[n-k, k], {n, 2, 12}, {k, 1, n-1}] // Flatten (* Amiram Eldar, Dec 13 2018 *)
PROG
(PARI) T(n, k) = if(n==k==1, 1, k*(k-1)^(n-k-1) );
for(n=2, 15, for(k=1, n-1, print1(T(n, k), ", "))) \\ G. C. Greubel, Aug 10 2019
(Magma)
T:= func< n, k | (n eq 1 and k eq 1) select 1 else k*(k-1)^(n-k-1) >;
[T(n, k): k in [1..n-1], n in [2..15]]; // G. C. Greubel, Aug 10 2019
(Sage)
def T(n, k):
if (n==k==1): return 1
else: return k*(k-1)^(n-k-1)
[[T(n, k) for k in (1..n-1)] for n in (2..15)] # G. C. Greubel, Aug 10 2019
(GAP)
T:= function(n, k)
if (n=1 and k=1) then return 1;
else return k*(k-1)^(n-k-1);
fi;
end;
Flat(List([2..15], n-> List([1..n-1], k-> T(n, k) ))); # G. C. Greubel, Aug 10 2019
CROSSREFS
Cf. A007283 (column 3), A003946 (column 4), A003947 (column 5), A002378 (row 2), A011379 (row 3), A179824 (row 4), A055897 (diagonal), A265584.
Sequence in context: A209127 A127954 A198061 * A339754 A238156 A281260
KEYWORD
nonn,tabl,easy
AUTHOR
R. J. Mathar, Dec 10 2015
STATUS
approved