login
A265504
Numbers n such that n*2^2281 - 1 is prime.
1
1, 1144, 4027, 7485, 9039, 9940, 11286, 11781, 13095, 13236, 13869, 14124, 14764, 16630, 18075, 18795, 19284, 20797, 21436, 22696, 23904, 25297, 25419, 27391, 27564, 28146, 28392, 29865, 30624, 31087, 31137, 31369, 33286, 33724, 33741, 34609, 34837, 35034, 37047, 37075, 39564, 39910, 41181
OFFSET
1,2
COMMENTS
The exponent of 2 in the expression, 2281, is a Mersenne exponent.
All large values of n correspond to pseudoprimes whose primality needs to be verified.
EXAMPLE
n = 1 is a term since 2^2281 - 1 is prime (the 17th Mersenne prime).
MATHEMATICA
Select[Range[10^4], PrimeQ[2^2281 # - 1] &] (* Vincenzo Librandi, Jan 12 2016 *)
PROG
(MATLAB)
if isprime(n*2^2281-1)
disp(n)
end
(PARI) is(n)=ispseudoprime(n*2^2281 - 1) \\ Anders Hellström, Dec 16 2015
(Magma) [n: n in [1..10^4] |IsPrime(n*2^2281-1)]; // Vincenzo Librandi, Jan 12 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Vardan Semerjyan, Dec 09 2015
EXTENSIONS
More terms from Soumadeep Ghosh, Feb 14 2016
STATUS
approved