login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265185
Non-vanishing traces of the powers of the adjacency matrix for the simple Lie algebra B_4: 2 * ((2 + sqrt(2))^n + (2 - sqrt(2))^n).
5
4, 8, 24, 80, 272, 928, 3168, 10816, 36928, 126080, 430464, 1469696, 5017856, 17132032, 58492416, 199705600, 681837568, 2327939072, 7948081152, 27136446464, 92649623552, 316325601280, 1080003158016, 3687361429504, 12589439401984, 42983034748928
OFFSET
0,1
COMMENTS
a(n) is the trace of the 2n-th power of the adjacency matrix M for the simple Lie algebra B_4, given in the Damianou link. M = Matrix[row 1; row 2; row 3; row 4] = Matrix[0,1,0,0; 1,0,1,0; 0,1,0,2; 0,0,1,0]. Equivalently, the trace tr(M^(2k)) is the sum of the 2n-th powers of the eigenvalues of M. The eigenvalues are the zeros of the characteristic polynomial of M, which is det(xI - M) = x^4 - 4x^2 + 2 = A127672(4,x), and are (+-) sqrt((2 + sqrt(2)) and (+-) sqrt((2 - sqrt(2)), or the four unique values generated by 2*cos((2n+1)*Pi/8). Compare with A025192 for B_3. The odd power traces vanish.
-log(1 - 4*x^2 + 2*x^4) = 8*x^2/2 + 24*x^4/4 + 80*x^6/6 + ... = Sum_{n>0} tr(M^k) x^k / k = Sum_{n>0} a(n) x^(2k) / 2k gives an aerated version of the sequence a(n), excluding a(0), and exp(-log(1 - 4*x + 2*x^2)) = 1 / (1 - 4*x + 2*x^2) is the e.g.f. for A007070.
As in A025192, the cycle index partition polynomials P_k(x[1],...,x[k]) of A036039 evaluated with the negated power sums, the aerated a(n), are P_2(0,-a(1)) = P_2(0,-8) = -8, P_4(0,-a(1),0,-a(2)) = P_4(0,-8,0,-24) = 48, and all other P_k(0,-a(1),0,-a(2),0,...) = 0 since 1 - 4*x^2 + 2*x^4 = 1 - 8*x^2/2! + 48*x^4/4! = det(I - x M) = exp(-Sum_{k>0} tr(M^k) x^k / k) = exp[P.(-tr(M),-tr(M^2),...)x] = exp[P.(0,-a(1),0,-a(2),...)x].
Because of the inverse relation between the Faber polynomials F_n(b1,b2,...,bn) of A263916 and the cycle index polynomials, F_n(0,-4,0,2,0,0,0,...) = tr(M^n) gives aerated a(n), excluding a(0). E.g., F_2(0,-4) = -2 * -4 = 8, F_4(0,-4,0,2) = -4 * 2 + 2 * (-4)^2 = 24, and F_6(0,-4,0,2,0,0) = -2*(-4)^3 + 6*(-4)*2 = 80.
FORMULA
a(n) = 2 * ((2 + sqrt(2))^n + (2 - sqrt(2))^n) = Sum_{k=0..3} 2^(2n) (cos((2k+1)*Pi/8))^(2n) = 2*2^(2n) (cos(Pi/8)^(2n) + cos(3*Pi/8)^(2n)) = 2 Sum_{k=0..1} (exp(i(2k+1)*Pi/8) + exp(-i*(2k+1)*Pi/8))^(2n).
E.g.f.: 2 * e^(2*x) * (e^(sqrt(2)*x) + e^(-sqrt(2)*x)) = 4*e^(2*x)*cosh(sqrt(2)*x) = 2*(exp(4*x*cos(Pi/8)^2) + exp(4*x cos(3*Pi/8)^2) ).
a(n) = 4*A006012(n) = 8*A007052(n-1) = 2*A056236(n).
G.f.: (4-8*x)/(1-4*x+2*x^2). - Robert Israel, Dec 07 2015
Note the preceding o.g.f. is four times that of A006012 and the denominator is y^4 * A127672(4,1/y) with y = sqrt(x). Compare this with those of A025192 and A189315. - Tom Copeland, Dec 08 2015
MATHEMATICA
4 LinearRecurrence[{4, -2}, {1, 2}, 30] (* Vincenzo Librandi, Dec 06 2015 and slightly modified by Robert G. Wilson v, Feb 13 2018 *)
PROG
(Magma) [Floor(2 * ((2 + Sqrt(2))^n + (2 - Sqrt(2))^n)): n in [0..30]]; // Vincenzo Librandi, Dec 06 2015
(PARI) x='x+O('x^30); Vec((4-8*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Feb 12 2018
KEYWORD
nonn,easy
AUTHOR
Tom Copeland, Dec 04 2015
EXTENSIONS
More terms from Vincenzo Librandi, Dec 06 2015
STATUS
approved