login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265161
Array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = (3/2)*(3^k - 1) + A265159(n,k), n,k >= 1.
2
8, 35, 26, 89, 107, 80, 116, 269, 323, 242, 251, 350, 809, 971, 728, 278, 755, 1052, 2429, 2915, 2186, 332, 836, 2267, 3158, 7289, 8747, 6560, 359, 998, 2510, 6803, 9476, 21869, 26243, 19682, 737, 1079, 2996, 7532, 20411, 28430, 65609, 78731, 59048
OFFSET
1,1
COMMENTS
Conjecture 1: The array contains without duplication all possible "gap numbers" as defined in A265100.
FORMULA
Conjecture 2: A(n,k) = A191107(n)*3^k - 1.
EXAMPLE
Array A begins:
. 8 26 80 242 728 2186 6560 19682 59048
. 35 107 323 971 2915 8747 26243 78731 236195
. 89 269 809 2429 7289 21869 65609 196829 590489
. 116 350 1052 3158 9476 28430 85292 255878 767636
. 251 755 2267 6803 20411 61235 183707 551123 1653371
. 278 836 2510 7532 22598 67796 203390 610172 1830518
. 332 998 2996 8990 26972 80918 242756 728270 2184812
. 359 1079 3239 9719 29159 87479 262439 787319 2361959
. 737 2213 6641 19925 59777 179333 538001 1614005 4842017
MATHEMATICA
(* Array: *)
a005836[1] := 0; a005836[n_] := If[OddQ[n], 3*a005836[Floor[(n + 1)/2]], a005836[n - 1] + 1]; a265159[n_, k_] := 5 + 9*a005836[2^(k - 1)*(2 n - 1)]; a265161[n_, k_] := (3/2)*(3^k - 1) + a265159[n, k]; Grid[Table[a265161[n, k], {n, 9}, {k, 9}]]
(* Array antidiagonal flattened: *)
a005836[1] := 0; a005836[n_] := If[OddQ[n], 3*a005836[Floor[(n + 1)/2]], a005836[n - 1] + 1]; a265159[n_, k_] := 5 + 9*a005836[2^(k - 1)*(2 n - 1)]; a265161[n_, k_] := (3/2)*(3^k - 1) + a265159[n, k]; Flatten[Table[a265161[n - k + 1, k], {n, 9}, {k, n}]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
L. Edson Jeffery, Dec 03 2015
STATUS
approved