login
A264776
a(n) is least number > 0 such that the concatenation of a(1) ... a(n) is pentagonal: (3n^2 - n)/2.
6
1, 2, 47, 160, 6070026, 47418729166667, 4741872916666741666666666667, 47418729166667416666666666674166666666666666666666666667
OFFSET
1,2
COMMENTS
It appears that a(n) = ceiling((a(n-1) + 5/12)*10^(7*2^(n-6))) for n >= 7. - Jon E. Schoenfield, Nov 24 2015
EXAMPLE
1, 12, 1247, 1247160, 12471606070026 are pentagonal.
PROG
(PARI) ispentagonal(n)=ispolygonal(n, 5)
first(m)=my(v=vector(m), s=""); s="1"; v[1]=1; for(i=2, m, n=1; while(!ispentagonal(eval(concat(s, Str(n)))), n++); v[i]=n; s=concat(s, Str(n))); v
CROSSREFS
Sequence in context: A069548 A065044 A142313 * A153213 A355009 A304725
KEYWORD
nonn,base,more
AUTHOR
Anders Hellström, Nov 24 2015
EXTENSIONS
a(6)-a(8) from Jon E. Schoenfield, Nov 24 2015
STATUS
approved