login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264234
Numerators of the coefficients in the expansion of 1/W(x) - 1/x where W(x) is the Lambert W function.
3
1, -1, 2, -9, 32, -625, 324, -117649, 131072, -4782969, 1562500, -25937424601, 35831808, -23298085122481, 110730297608, -4805419921875, 562949953421312, -48661191875666868481, 91507169819844, -104127350297911241532841, 640000000000000000, -865405750887126927009
OFFSET
0,3
COMMENTS
If prefixed by an additional 1, numerators of coefficients of expansion of exp(W(x)). - N. J. A. Sloane, Jan 08 2021
LINKS
FORMULA
a(n) = (-1)^n*numerator(g(n)) where g(n) = n^n/n!.
a(n) = (-1)^n*denominator(h(n)) where h(n) = Sum_{k=0..n-1}(n!*n^k)/(k!*n^n).
EXAMPLE
Coefficients of expansion of exp(W(x)) are 1, 1, -1/2, 2/3, -9/8, 32/15, -625/144, 324/35, -117649/5760, 131072/2835, -4782969/44800, ... - N. J. A. Sloane, Jan 08 2021
MAPLE
seq(numer((-1)^n*n^n/n!), n = 0..21);
MATHEMATICA
CoefficientList[Series[1/ProductLog[x] - 1/x, {x, 0, 21}], x] // Numerator
PROG
(PARI) vector(22, n, n--; (-1)^n*numerator(n^n/n!)) \\ Altug Alkan, Nov 09 2015
(Magma) [(-1)^n * Numerator(n^n/Factorial(n)): n in [0..50]]; // G. C. Greubel, Nov 14 2017
CROSSREFS
Denominators in A264235.
Cf. A036505.
Sequence in context: A338437 A296151 A036505 * A056916 A139628 A170872
KEYWORD
sign,frac
AUTHOR
Peter Luschny, Nov 09 2015
STATUS
approved