login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263852
Number of 2-ascent sequences of length n with no consecutive repeated letters.
2
1, 1, 2, 6, 21, 87, 413, 2213, 13205, 86828, 623712, 4859307, 40810353, 367525528, 3532986232, 36107260781, 390938180027, 4470065574970, 53825174198772, 680796406765054, 9024180239004754, 125096535241364056, 1810074349321324370, 27289548352480937756
OFFSET
0,3
LINKS
S. Kitaev, J. Remmel, p-Ascent Sequences, arXiv preprint arXiv:1503.00914 [math.CO], 2015.
MAPLE
b:= proc(n, i, t) option remember; `if`(n<1, 1, add(
`if`(j=i, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+2))
end:
a:= n-> b(n-1, 0$2):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 19 2015
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Sum[If[j == i, 0, b[n-1, j, t + If[j>i, 1, 0]]], {j, 0, t+2}]]; a[n_] := b[n-1, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2016, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A264909.
Sequence in context: A326335 A256180 A150227 * A189243 A033540 A177479
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 18 2015
EXTENSIONS
a(10)-a(23) from Alois P. Heinz, Nov 19 2015
STATUS
approved