login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263848
Irregular triangle read by rows: row n gives coefficients of basis polynomial {n,k} expressed in terms of binomial coefficients, high order terms first.
2
1, 1, -1, 1, 0, -1, 1, -1, 1, 1, 0, 0, -1, 2, 0, -1, 1, 2, -1, 0, 1, 1, -1, 1, -1, 1, 0, 0, 0, -1, 3, 0, 0, -1, 1, 5, 0, -1, 0, 1, 3, 0, -1, 1, -1, 3, -1, 0, 0, 1, 5, -2, 0, 1, -1, 3, -2, 1, 0, -1, 1, -1, 1, -1, 1, 1, 0, 0, 0, 0, -1, 4, 0, 0, 0, -1, 1, 9, 0, 0
OFFSET
0,14
LINKS
Peter J. C. Moses, First 300 rows.
Vladimir Shevelev, On the Basis Polynomials in the Theory of Permutations with Prescribed Up-Down Structure, arXiv|math.CO/0801.0072, 2007-2010. See Appendix.
V. Shevelev and J. Spilker, Up-down coefficients for permutations, Elemente der Mathematik, Vol. 68 (2013), no. 3, 115-127.
EXAMPLE
Triangle begins:
1,
1, -1,
1, 0, -1,
1, -1, 1,
1, 0, 0, -1,
2, 0, -1, 1,
2, -1, 0, 1,
1, -1, 1, -1,
1, 0, 0, 0, -1,
3, 0, 0, -1, 1,
...
CROSSREFS
Sequence in context: A334296 A227003 A307431 * A348157 A108455 A193759
KEYWORD
sign,tabf,more
AUTHOR
N. J. A. Sloane, Nov 15 2015
EXTENSIONS
More terms from Peter J. C. Moses, Dec 12 2015
STATUS
approved