login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = p(2*n)-p(2*n-2)-p(n) where p(n) are the partition numbers A000041(n).
1

%I #16 Oct 10 2018 06:15:23

%S 0,1,3,6,13,24,43,74,124,200,319,496,760,1147,1710,2514,3664,5282,

%T 7548,10696,15044,20999,29128,40140,54995,74927,101556,136950,183832,

%U 245643,326847,433125,571747,751905,985350,1286838,1675080,2173576,2811888,3626974,4665196,5984231,7656041,9769972

%N a(n) = p(2*n)-p(2*n-2)-p(n) where p(n) are the partition numbers A000041(n).

%H Reinhard Zumkeller, <a href="/A263847/b263847.txt">Table of n, a(n) for n = 1..1000</a>

%H S. Mertens, <a href="http://arxiv.org/abs/1502.06635">Small random instances of the stable roommates problem</a>, arXiv preprint arXiv:1502.06635 [math.CO], 2015.

%p with(combinat): seq(numbpart(2*n)-numbpart(2*n-2)-numbpart(n),n=1..45); # _Muniru A Asiru_, Oct 10 2018

%t a[n_] := PartitionsP[2n] - PartitionsP[2n - 2] - PartitionsP[n];

%t Array[a, 44] (* _Jean-François Alcover_, Oct 10 2018 *)

%o (PARI) vector(100, n, numbpart(2*n)-numbpart(2*n-2)-numbpart(n)) \\ _Altug Alkan_, Nov 11 2015

%o (Haskell)

%o a263847 n = a263847_list !! (n-1)

%o a263847_list = 0 : zipWith (-)

%o (zipWith (-) (tail qs) qs) (drop 2 a000041_list)

%o where qs = es $ tail a000041_list

%o es [] = []; es [x] = []; es (_:x:xs) = x : es xs

%o -- _Reinhard Zumkeller_, Nov 12 2015

%o (GAP) List([1..45],n->NrPartitions(2*n)-NrPartitions(2*n-2)-NrPartitions(n)); # _Muniru A Asiru_, Oct 10 2018

%Y Cf. A000041.

%K nonn

%O 1,3

%A _N. J. A. Sloane_, Nov 11 2015