login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263847
a(n) = p(2*n)-p(2*n-2)-p(n) where p(n) are the partition numbers A000041(n).
1
0, 1, 3, 6, 13, 24, 43, 74, 124, 200, 319, 496, 760, 1147, 1710, 2514, 3664, 5282, 7548, 10696, 15044, 20999, 29128, 40140, 54995, 74927, 101556, 136950, 183832, 245643, 326847, 433125, 571747, 751905, 985350, 1286838, 1675080, 2173576, 2811888, 3626974, 4665196, 5984231, 7656041, 9769972
OFFSET
1,3
LINKS
S. Mertens, Small random instances of the stable roommates problem, arXiv preprint arXiv:1502.06635 [math.CO], 2015.
MAPLE
with(combinat): seq(numbpart(2*n)-numbpart(2*n-2)-numbpart(n), n=1..45); # Muniru A Asiru, Oct 10 2018
MATHEMATICA
a[n_] := PartitionsP[2n] - PartitionsP[2n - 2] - PartitionsP[n];
Array[a, 44] (* Jean-François Alcover, Oct 10 2018 *)
PROG
(PARI) vector(100, n, numbpart(2*n)-numbpart(2*n-2)-numbpart(n)) \\ Altug Alkan, Nov 11 2015
(Haskell)
a263847 n = a263847_list !! (n-1)
a263847_list = 0 : zipWith (-)
(zipWith (-) (tail qs) qs) (drop 2 a000041_list)
where qs = es $ tail a000041_list
es [] = []; es [x] = []; es (_:x:xs) = x : es xs
-- Reinhard Zumkeller, Nov 12 2015
(GAP) List([1..45], n->NrPartitions(2*n)-NrPartitions(2*n-2)-NrPartitions(n)); # Muniru A Asiru, Oct 10 2018
CROSSREFS
Cf. A000041.
Sequence in context: A128517 A022568 A120006 * A061567 A293076 A293421
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 11 2015
STATUS
approved