login
A263491
Decimal expansion of the generalized hypergeometric function 3F2(1/2,1/2,3/2; 1,1;x) at x=1/4.
1
1, 1, 1, 4, 4, 9, 3, 6, 2, 2, 5, 2, 8, 8, 2, 0, 2, 1, 6, 0, 8, 0, 9, 9, 5, 0, 6, 9, 9, 6, 0, 6, 1, 3, 5, 3, 2, 0, 7, 5, 1, 9, 1, 5, 4, 3, 6, 0, 7, 7, 9, 0, 2, 4, 3, 7, 8, 8, 1, 9, 1, 4, 2, 2, 6, 3, 2, 8, 0, 4, 7, 9, 8, 8, 7, 1, 4, 2, 7, 7, 8, 8, 8, 7, 1, 9, 7, 1, 5, 1, 0, 0, 5
OFFSET
1,4
COMMENTS
Multiplication with Pi^2/8 gives 1.37495.. = integral_{x=0..infinity} x*I_0(x)*K_0(x)*K_1(x) dx, where I and K are Modified Bessel Functions
EXAMPLE
1.1144936225288202160...
MATHEMATICA
RealDigits[HypergeometricPFQ[{1/2, 1/2, 3/2}, {1, 1}, 1/4], 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *)
RealDigits[4*MeijerG[{{1, 1}, {1}}, {{1/2, 1/2, 3/2}, {}}, 1/4] / Pi^(5/2), 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *)
CROSSREFS
Sequence in context: A021073 A021961 A115365 * A272427 A068340 A097667
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Oct 19 2015
STATUS
approved