login
A263227
a(n) = n*(67*n - 89)/2.
4
0, -11, 45, 168, 358, 615, 939, 1330, 1788, 2313, 2905, 3564, 4290, 5083, 5943, 6870, 7864, 8925, 10053, 11248, 12510, 13839, 15235, 16698, 18228, 19825, 21489, 23220, 25018, 26883, 28815, 30814, 32880, 35013, 37213, 39480, 41814, 44215, 46683, 49218, 51820
OFFSET
0,2
COMMENTS
For n>=3, a(n) = the hyper-Wiener index of the Jahangir graph J_{3,n}. The Jahangir graph J_{3,n} is a connected graph consisting of a cycle graph C(3n) and one additional center vertex that is adjacent to n vertices of C(3n) at distances 3 to each other on C(3n).
The Hosoya polynomial of J_(3,n) is 4nx + (1/2)n(n+9)x^2 + 2n(n-1)x^3 + n(2n-5)x^4.
FORMULA
G.f.: x*(-11+78*x)/(1-x)^3. - Vincenzo Librandi, Oct 13 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Oct 13 2015
MAPLE
seq((1/2)*n*(67*n-89), n = 0 .. 40);
MATHEMATICA
Table[n (67 n - 89)/2, {n, 0, 40}] (* Vincenzo Librandi, Oct 13 2015
PROG
(PARI) vector(50, n, n--; n*(67*n-89)/2) \\ Altug Alkan, Oct 12 2015
(Magma) [n*(67*n-89)/2: n in [0..40]]; // Bruno Berselli, Oct 15 2015
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Emeric Deutsch, Oct 12 2015
STATUS
approved