login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263174
Primes p such that p^2 +- 12 and p^3 +- 12 are also primes.
0
5, 75641, 249199, 294001, 378779, 438479, 535229, 897349, 918989, 933199, 1271069, 1393771, 1403569, 2270669, 2523991, 2752219, 3427751, 3966761, 4348489, 4496941, 4621619, 4731929, 4851719, 5721281, 7518869, 7606801, 8413411, 8649881, 8757691, 9068659, 9586999
OFFSET
1,1
COMMENTS
Intersection of A153116 and A153322.
EXAMPLE
a(1) = 5 (prime): 5^2 + 12 = 37; 5^2 - 12 = 13; 5^3 + 12 = 137; 5^3 - 12 = 113; are all prime.
a(2) = 75641(prime): 75641^2 + 12 = 5721560893; 75641^2 - 12 = 5721560869; 75641^3 + 12 = 432784586599733; 75641^3 - 12 = 432784586599709; are all prime.
MAPLE
select(p -> andmap(isprime, [p, p^2+12, p^2-12, p^3+12, p^3-12]), [seq(p, p=1.. 10^6)]);
MATHEMATICA
k = 12; Select[Prime[Range[10^6]], PrimeQ[#^2 + k] && PrimeQ[#^2 - k] && PrimeQ[#^3 + k] && PrimeQ[#^3 - k] &]
PROG
(PARI) forprime(p = 1, 1000000, if(isprime(p^2+12) && isprime(p^2-12) && isprime(p^3+12) && isprime(p^3-12), print1(p, ", ")));
(Magma) [p: p in PrimesUpTo(1000000) | IsPrime(p^2+12) and IsPrime(p^2-12) and IsPrime(p^3+12) and IsPrime(p^3-12)];
CROSSREFS
Sequence in context: A050816 A171981 A145232 * A123591 A133381 A366270
KEYWORD
nonn,less
AUTHOR
K. D. Bajpai, Oct 11 2015
STATUS
approved