login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262861
Binary representation of the n-th iteration of the "Rule 147" elementary cellular automaton starting with a single ON (black) cell.
2
1, 101, 10001, 1011101, 100010001, 10111011101, 1000100010001, 101110111011101, 10001000100010001, 1011101110111011101, 100010001000100010001, 10111011101110111011101, 1000100010001000100010001, 101110111011101110111011101, 10001000100010001000100010001
OFFSET
0,2
FORMULA
From Colin Barker, Jan 17 2016 and Apr 17 2019: (Start)
a(n) = 10001*a(n-2) - 10000*a(n-4) for n>3.
G.f.: (1+101*x+1000*x^3) / ((1-x)*(1+x)*(1-100*x)*(1+100*x)).
(End)
a(n) = floor((10000 + 110*(n mod 2))*100^n/9999). - Karl V. Keller, Jr., Aug 11 2021
MATHEMATICA
rule=147; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]], {k, 1, rows}] (* Binary Representation of Rows *)
PROG
(Python) print([(10000 + 110*(n%2))*100**n//9999 for n in range(30)]) # Karl V. Keller, Jr., Aug 11 2021
CROSSREFS
Sequence in context: A152756 A265172 A153500 * A371563 A164367 A263244
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 17 2016
STATUS
approved