login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262849
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with each row divisible by 7 and column not divisible by 7, read as a binary number with top and left being the most significant bits.
11
6, 6, 13, 12, 34, 27, 318, 196, 132, 54, 900, 3181, 1336, 396, 109, 4536, 31050, 37635, 5184, 1264, 219, 34782, 352880, 771084, 420654, 31512, 3962, 438, 178926, 4679725, 17912392, 14762016, 3896365, 175820, 11886, 877, 1042284, 58693450, 481968171
OFFSET
1,1
COMMENTS
Table starts
....6......6.......12........318..........900..........4536.........34782
...13.....34......196.......3181........31050........352880.......4679725
...27....132.....1336......37635.......771084......17912392.....481968171
...54....396.....5184.....420654.....14762016.....661066920...35819485902
..109...1264....31512....3896365....290338650...26232879096.2864161217701
..219...3962...175820...39348387...5692555116.1007501698644
..438..11886...793812..417279054.108936025308
..877..35914..4140908.3999504445
.1755.108556.21744992
.3510.325668
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-3) -2*a(n-4)
k=2: [order 15]
k=3: [order 43]
k=4: [order 29]
Empirical for row n:
n=1: [linear recurrence of order 16]
EXAMPLE
Some solutions for n=3 k=4
..0..1..1..1..0..0....0..0..0..1..1..1....0..0..1..1..1..0....0..0..0..0..0..0
..0..0..0..1..1..1....1..1..1..0..0..0....0..1..1..1..0..0....1..1..1..1..1..1
..0..0..1..1..1..0....0..1..0..1..0..1....1..1..0..0..0..1....1..0..0..0..1..1
..0..0..1..1..1..0....0..1..0..1..0..1....0..1..1..1..0..0....1..0..0..0..1..1
..1..1..1..1..1..1....0..1..0..1..0..1....1..1..1..0..0..0....1..0..0..0..1..1
CROSSREFS
Column 1 is A033129(n+2).
Sequence in context: A352135 A272349 A262850 * A115014 A168332 A214828
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 03 2015
STATUS
approved