OFFSET
1,1
COMMENTS
We can see from the formula that:
Product_{d|n} (moebius(d)*(moebius(d) + 3) + 4) = 4^d(n), for n > 1, where moebius(n) and d(n) are A008683 and A000005 respectively.
It also can be proved that
Product_{d|n} ((moebius(d) - 3/2 + I*sqrt(7)/2)) = Product_{d|n} ((moebius(d) - 3/2 - I*sqrt(7)/2)) is integer iff n belongs to A048109, where I = sqrt(-1).
LINKS
FORMULA
a(p) = -1 if p is prime.
a(n) = 2*moebius(n) if moebius(n) = 1;
a(n) = moebius(n) if moebius(n) != 1.
And in general:
a(n) = moebius(n)*(moebius(n) + 3)/2.
EXAMPLE
If p is prime, (b(p)+1)(b(1)+1) = 1 => b(p)+1 = 1/2 => b(p) = -1/2 => a(p) = 2*b(p) = -1.
For n=6, (1+b(1))(1+b(2))(1+b(3))(1+b(6)) = 1 => 2*(1/2)*(1/2)*(1+b(6)) = 1 => b(6) = 1 => a(6) = 2*b(6) = 2. - Example corrected by Antti Karttunen, Jul 25 2017
MAPLE
b:= proc(n) option remember; if n>1 then (1)/(mul((1+b(d)), d = numtheory:-divisors(n) minus {n}))-1 else 1; end if; end proc: b(1):= 1:a(i):=2*b(i): L:=seq(a(i), i=1..200);
MATHEMATICA
Table[MoebiusMu[n] (MoebiusMu[n] + 3) / 2, {n, 80}] (* Vincenzo Librandi, Jan 19 2016 *)
PROG
(PARI) a(n) = moebius(n)*(moebius(n)+3)/2; \\ Michel Marcus, Jan 19 2016
(Magma) [MoebiusMu(n)*(MoebiusMu(n)+3)/2: n in [1..100]]; // Vincenzo Librandi, Jan 19 2016
CROSSREFS
KEYWORD
sign
AUTHOR
Gevorg Hmayakyan, Jan 17 2016
STATUS
approved