login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262587
"Special" prime powers in Serre's sense.
1
2, 3, 5, 7, 8, 13, 17, 31, 32, 37, 43, 73, 101, 128, 157, 197, 211, 241, 257, 307, 343, 401, 421, 463, 577, 601, 677, 757, 1123, 1297, 1483, 1601, 1723, 2048, 2187, 2551, 2917, 2971, 3137, 3307, 3541, 3907, 4357, 4423, 4831, 5113, 5477, 5701, 6007, 6163, 6481, 7057, 8011, 8101, 8191
OFFSET
1,1
COMMENTS
See Hirschfeld, pp. 49-50 for precise definition.
By a theorem of Hasse-Weil and Serre, every (absolutely irreducible, smooth) genus 2 curve over GF(q) has cardinality at most q + 1 + 2*floor(2*sqrt(q)). This sequence consists exactly of the prime powers q (excluding 4 and 9) for which there does not exist any genus 2 curve over GF(q) with cardinality equal to q + 1 + 2*floor(2*sqrt(q)). - Robin Visser, Aug 26 2023
REFERENCES
J. W. P. Hirschfeld, Linear codes and algebraic codes, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.
J.-P. Serre, Oeuvres, vol. 3, pp. 658-663 and 664-669.
LINKS
Jean-Pierre Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Ser. I Math. 296 (1983), no. 9, 397-402.
Jean-Pierre Serre, Nombres de points des courbe algebriques sur F_q, Sémin. Théorie Nombres Bordeaux, 1982/83, No. 22; Oeuvres, vol. 3, pp. 664-669.
PROG
(Sage)
for q in range(1, 1000):
if Integer(q).is_prime_power():
p = Integer(q).prime_factors()[0]
if (not Integer(q).is_square()):
if ((floor(2*sqrt(q))%p == 0) or (q-1).is_square() or
(4*q-3).is_square() or (4*q-7).is_square()): print(q) # Robin Visser, Aug 26 2023
CROSSREFS
Subsequence of A246655.
Sequence in context: A028799 A080435 A108330 * A328724 A039892 A278645
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 21 2015
EXTENSIONS
More terms from Robin Visser, Aug 26 2023
STATUS
approved