OFFSET
0,2
COMMENTS
In general, if m > 1 and g.f. = Product_{k>=1} 1/((1+x^k)*(1-x^k)^m), then a(n) ~ exp(sqrt((2*m-1)*n/3)*Pi) * (2*m-1)^((m+1)/4) / (2^(m+1) * 3^((m+1)/4) * n^((m+3)/4)).
LINKS
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 16.
FORMULA
a(n) ~ exp(sqrt(7*n/3)*Pi) * 7^(5/4) / (32 * 3^(5/4) * n^(7/4)).
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[1/((1 + x^k)*(1 - x^k)^4), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 20 2015
STATUS
approved