login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262150
Expansion of f(-x^3)^3 / (f(-x^2) * f(-x^4)^2) in powers of x where f() is a Ramanujan theta function.
4
1, 0, 1, -3, 4, -3, 5, -12, 14, -10, 18, -37, 41, -34, 54, -98, 109, -92, 138, -237, 260, -230, 329, -531, 583, -526, 728, -1129, 1233, -1143, 1537, -2292, 2503, -2355, 3097, -4486, 4889, -4677, 6031, -8502, 9263, -8962, 11372, -15680, 17066, -16703, 20893
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/24) * eta(q^3)^3 / (eta(q^2) * eta(q^4)^2) in powers of q.
Euler transform of period 12 sequence [ 0, 1, -3, 3, 0, -2, 0, 3, -3, 1, 0, 0, ...].
a(n) = A143066(3*n).
a(n) ~ (-1)^n * exp(Pi*sqrt(n/2)) / (2^(3/4) * 3^(3/2) * n^(3/4)). - Vaclav Kotesovec, Sep 13 2015
EXAMPLE
G.f. = 1 + x^2 - 3*x^3 + 4*x^4 - 3*x^5 + 5*x^6 - 12*x^7 + 14*x^8 + ...
G.f. = q^-1 + q^47 - 3*q^71 + 4*q^95 - 3*q^119 + 5*q^143 - 12*q^167 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^3]^3 / (QPochhammer[ x^2] QPochhammer[ x^4]^2), {x, 0, n}];
nmax = 60; CoefficientList[Series[Product[(1-x^(3*k))^3 / ((1-x^(2*k))^3 * (1+x^(2*k))^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 13 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 / (eta(x^2 + A) * eta(x^4 + A)^2), n))};
CROSSREFS
Cf. A143066.
Sequence in context: A226798 A045997 A360059 * A325594 A104076 A238161
KEYWORD
sign
AUTHOR
Michael Somos, Sep 13 2015
STATUS
approved