login
A262071
Number T(n,k) of ordered partitions of an n-set with nondecreasing block sizes and maximal block size equal to k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
15
1, 0, 1, 0, 2, 1, 0, 6, 3, 1, 0, 24, 18, 4, 1, 0, 120, 90, 30, 5, 1, 0, 720, 630, 200, 45, 6, 1, 0, 5040, 4410, 1610, 350, 63, 7, 1, 0, 40320, 37800, 13440, 3290, 560, 84, 8, 1, 0, 362880, 340200, 130200, 30870, 5922, 840, 108, 9, 1, 0, 3628800, 3515400, 1327200, 334950, 61992, 9870, 1200, 135, 10, 1
OFFSET
0,5
LINKS
FORMULA
E.g.f. of column k: x^k * Product_{i=1..k} (i-1)!/(i!-x^i).
EXAMPLE
T(3,1) = 6: 1|2|3, 1|3|2, 2|1|3, 2|3|1, 3|1|2, 3|2|1.
T(3,2) = 3: 1|23, 2|13, 3|12.
T(3,3) = 1: 123.
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 1;
0, 6, 3, 1;
0, 24, 18, 4, 1;
0, 120, 90, 30, 5, 1;
0, 720, 630, 200, 45, 6, 1;
0, 5040, 4410, 1610, 350, 63, 7, 1;
0, 40320, 37800, 13440, 3290, 560, 84, 8, 1;
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+`if`(i>n, 0, binomial(n, i)*b(n-i, i))))
end:
T:= (n, k)-> b(n, k) -`if`(k=0, 0, b(n, k-1)):
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, Binomial[n, i]*b[n - i, i]]]]; T[n_, k_] := b[n, k] - If[k == 0, 0, b[n, k - 1]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 12 2016, Alois P. Heinz *)
CROSSREFS
Columns k=0-10 give: A000007, A000142 (for n>0), A272492, A272493, A272494, A272495, A272496, A272497, A272498, A272499, A272500.
Main diagonal gives A000012.
Row sums give A005651.
T(2n,n) gives A266518.
Cf. A262072.
Sequence in context: A180663 A331327 A301924 * A011312 A275328 A147720
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 10 2015
STATUS
approved