login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262062
The first of six consecutive positive integers the sum of the squares of which is equal to the sum of the squares of seven consecutive positive integers.
2
85, 2269, 58969, 1530985, 39746701, 1031883301, 26789219185, 695487815569, 18055893985669, 468757755811885, 12169645757123401, 315942031929396601, 8202323184407188285, 212944460762657498869, 5528353656644687782369, 143524250611999224842785
OFFSET
1,1
COMMENTS
For the first of the corresponding seven consecutive positive integers, see A262063.
FORMULA
a(n) = 27*a(n-1)-27*a(n-2)+a(n-3) for n>3.
G.f.: -x*(x^2-26*x+85) / ((x-1)*(x^2-26*x+1)).
EXAMPLE
85 is in the sequence because 85^2 + ... + 90^2 = 45955 = 78^2 + ... + 84^2.
MATHEMATICA
CoefficientList[Series[(x^2 - 26 x + 85)/((1 - x) (x^2 - 26 x + 1)), {x, 0, 20}], x] (* Vincenzo Librandi, Sep 10 2015 *)
PROG
(PARI) Vec(-x*(x^2-26*x+85)/((x-1)*(x^2-26*x+1)) + O(x^20))
(Magma) I:=[85, 2269, 58969]; [n le 3 select I[n] else 27*Self(n-1)-27*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Sep 10 2015
CROSSREFS
Cf. A262063.
Sequence in context: A020310 A163692 A221339 * A220736 A157110 A076463
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Sep 09 2015
STATUS
approved