Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #54 Jun 26 2024 09:38:26
%S 5,13,29,37,53,61,101,109,137,149,157,173,181,197,229,269,277,293,317,
%T 349,373,389,397,421,461,509,521,541,557,569,593,613,653,661,677,701,
%U 709,733,757,773,797,821,829,853,857,877,941,953,997,1013,1021,1061,1069
%N Primes such that z(p) is odd where z(n) is A214028(n).
%C From _Jianing Song_, Aug 13 2019: (Start)
%C Primes p with 4 zeros in a fundamental period of A000129 mod p, that is, primes p such that A214027(p) = 4. For a proof of the equivalence between A214027(p) = 4 and A214028(p) being odd, see Section 2 of my link below.
%C For p > 2, p is in this sequence if and only if A175181(p) == 4 (mod 8).
%C This sequence contains all primes congruent to 5 modulo 8. This corresponds to case (1) for k = 6 in the Conclusion of Section 1 of my link below.
%C Conjecturely, this sequence has density 7/24 in the primes. (End) [Comment rewritten by _Jianing Song_, Jun 16 2024 and Jun 20 2024]
%H Jianing Song, <a href="/A261580/b261580.txt">Table of n, a(n) for n = 1..1280</a>
%H Bernadette Faye and Florian Luca, <a href="http://arxiv.org/abs/1508.05714">Pell Numbers whose Euler Function is a Pell Number</a>, arXiv:1508.05714 [math.NT], 2015.
%H Jianing Song, <a href="/A053027/a053027.pdf">Lucas sequences and entry point modulo p</a>
%e The smallest Pell number divisible by the prime 5 has index 3, which is odd, so 5 is in the sequence.
%t f[n_] := Block[{k = 1}, While[Mod[Simplify[((1 + Sqrt@ 2)^k - (1 - Sqrt@ 2)^k)/(2 Sqrt@ 2)], n] != 0, k++]; k]; Select[Prime@ Range@ 180, OddQ@ f@ # &] (* _Michael De Vlieger_, Aug 25 2015 *)
%o (PARI) pell(n) = polcoeff(Vec(x/(1-2*x-x^2) + O(x^(n+1))), n);
%o z(n) = {k=1; while (pell(k) % n, k++); k;}
%o lista(nn) = {forprime(p=2, nn, if (z(p) % 2, print1(p, ", ")););}
%o (PARI) forprime(p=2, 1100, if(A214027(p)==4, print1(p, ", "))) \\ _Jianing Song_, Aug 13 2019
%Y Cf. A214028, A261581.
%Y Cf. also A175181.
%Y Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
%Y | m=1 | m=2 | m=3
%Y -----------------------------+----------+----------+---------
%Y The sequence {x(n)} | A000045 | A000129 | A006190
%Y The sequence {w(k)} | A001176 | A214027 | A322906
%Y Primes p such that w(p) = 1 | A112860* | A309580 | A309586
%Y Primes p such that w(p) = 2 | A053027 | A309581 | A309587
%Y Primes p such that w(p) = 4 | A053028 | this seq | A309588
%Y Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
%Y Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
%Y Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
%Y * and also A053032 U {2}
%K nonn
%O 1,1
%A _Michel Marcus_, Aug 25 2015