login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that digitsum(p) > digitsum(q) where q is the next prime after p.
1

%I #18 Sep 08 2022 08:46:13

%S 7,19,29,37,47,59,67,79,89,97,109,127,149,157,167,179,199,229,239,257,

%T 269,277,293,307,317,349,359,367,379,389,397,419,439,449,457,479,487,

%U 499,509,557,569,587,599,607,619,647,659,677,683,691,719,727,739,743,757

%N Primes p such that digitsum(p) > digitsum(q) where q is the next prime after p.

%C A000040(n) for n such that A007605(n) > A007605(n+1). - _Robert Israel_, Aug 17 2015

%H K. D. Bajpai, <a href="/A261338/b261338.txt">Table of n, a(n) for n = 1..10000</a>

%e 19 is in the sequence because it is prime; [digitsum(19) = 1 + 9 = 10] > [digitsum(23) = 2 + 3 = 5] where 19 and 23 are consecutive primes.

%e 47 is in the sequence because it is prime; [digitsum(47) = 4 + 7 = 11] > [digitsum(53) = 5 + 3 = 8] where 47 and 53 are consecutive primes.

%p with(numtheory): A261338:= proc() local k, k1, p; p:=ithprime(n); k:=(add(d, d=convert(p, base, 10))); k1:=(add(d, d=convert(nextprime(p), base, 10))); if k > k1 then RETURN (p); fi; end: seq(A261338 (), n=1..300);

%t A261338 = {}; Do[p = Prime[n]; k = Plus @@ IntegerDigits[p]; k1 = Plus @@ IntegerDigits[NextPrime[p]]; If[k > k1, AppendTo[A261338, p]], {n, 1, 300}]; A261338 (* Bajpai *)

%t Prime[Select[Range[100], (Plus@@IntegerDigits[Prime[#]]) >

%t (Plus@@IntegerDigits[Prime[# + 1]]) &] (* _Alonso del Arte_, Aug 16 2015 *)

%t Prime[#]&/@SequencePosition[Table[Total[IntegerDigits[p]],{p,Prime[Range[ 150]]}],_?(#[[1]]>#[[2]]&)][[All,1]]//Quiet (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Oct 10 2020 *)

%o (PARI) forprime(p = 1,300, q=nextprime(p+1); if(sumdigits(p) > sumdigits(q), print1(p,", ")));

%o (Magma) [NthPrime(n) : n in [1..200] | &+Intseq(NthPrime(n)) ge &+Intseq(NthPrime(n+1))];

%Y Cf. A000040, A007605.

%K nonn,base

%O 1,1

%A _K. D. Bajpai_, Aug 15 2015