login
Expansion of (-3-164*x-x^2)/(1-99*x+99*x^2-x^3).
8

%I #20 Jun 17 2023 22:55:49

%S -3,-461,-45343,-4443321,-435400283,-42664784581,-4180713488823,

%T -409667257120241,-40143210484294963,-3933624960203786301,

%U -385455102889486762703,-37770666458209498958761,-3701139857801641411196043,-362673935398102648798253621,-35538344529156257940817658983

%N Expansion of (-3-164*x-x^2)/(1-99*x+99*x^2-x^3).

%C Mc Laughlin (2010) gives an identity relating ten sequences, denoted a_k, b_k, ..., f_k, p_k, q_k, r_k, s_k. This is the sequence a_k.

%H Kwang-Wu Chen, <a href="https://www.fq.math.ca/Papers1/50-3/Kwang-WuChen.pdf">Extensions of an amazing identity of Ramanujan</a>, Fib. Q., 50 (2012), 227-230.

%H J. Mc Laughlin, <a href="http://www.fq.math.ca/Papers1/48-1/McLaughlin.pdf">An identity motivated by an amazing identity of Ramanujan</a>, Fib. Q., 48 (No. 1, 2010), 34-38.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (99, -99, 1).

%t LinearRecurrence[{99,-99,1},{-3,-461,-45343},30] (* _Harvey P. Dale_, Dec 02 2017 *)

%o (PARI) Vec((-3-164*x-x^2)/(1-99*x+99*x^2-x^3) + O(x^20)) \\ _Michel Marcus_, Feb 29 2016

%Y Cf. A051028, A051029, A051030.

%Y Cf. A269548, A269549, A269550, A269551, A269552, A269553, A269554, A269555, A269556.

%K easy,sign

%O 0,1

%A _N. J. A. Sloane_, Aug 12 2015