login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260484
Complement of the Beatty sequence for e^(1/Pi) = A179706.
3
3, 7, 11, 14, 18, 22, 25, 29, 33, 36, 40, 44, 47, 51, 55, 58, 62, 66, 69, 73, 77, 80, 84, 88, 91, 95, 99, 102, 106, 110, 113, 117, 121, 124, 128, 132, 135, 139, 143, 146, 150, 154, 157, 161, 165, 168, 172, 176, 179, 183, 187, 190, 194, 198
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Beatty Sequence.
Eric Weisstein's World of Mathematics, e.
Eric Weisstein's World of Mathematics, Pi.
FORMULA
a(n) = floor(n*e^(1/Pi)/(e^(1/Pi)-1)).
EXAMPLE
For n = 5, floor(5*e^(1/Pi)/(e^(1/Pi)-1)) = 18.
MATHEMATICA
Floor[Range[100]/(1 - Exp[-1/Pi])] (* Paolo Xausa, Jul 17 2024 *)
PROG
(Python)
from sympy import E, pi, floor
for n in range(1, 101): print(floor(n*E**(1/pi)/(E**(1/pi)-1)), end=', ')
(PARI) vector(80, n, floor(n*exp(1/Pi)/(exp(1/Pi)-1))) \\ Michel Marcus, Aug 05 2015
CROSSREFS
Cf. A179706 (e^(1/Pi)), A260483 (complement).
Sequence in context: A310203 A310204 A310205 * A343028 A000572 A059568
KEYWORD
nonn
AUTHOR
Karl V. Keller, Jr., Jul 26 2015
STATUS
approved